關(guān)鍵字:晶體管
微縮化涉及兩大任務(wù):將晶體管的尺寸做到更小,以減少成本/功能并改善性能與功耗。從以往的歷史來(lái)看,人們?cè)诿恳粋€(gè)新的技術(shù)節(jié)點(diǎn)上都能同時(shí)達(dá)到密度與性能目標(biāo)。在工藝向32nm節(jié)點(diǎn)技術(shù)發(fā)展的過(guò)程中,在每一代技術(shù)中人們都成功而精確地同時(shí)實(shí)現(xiàn)了集成電路面積的微縮與晶體管密度的翻倍的目標(biāo)。然而,人們?nèi)匀唤?jīng)常需要在性能、功耗以及密度/面積這些因素之間進(jìn)行權(quán)衡。工程師們也在開(kāi)發(fā)彌合代際差別的解決方案方面表現(xiàn)出驚人的創(chuàng)造性。
目前,人們?cè)诳朔@些技術(shù)極限方面已經(jīng)取得了一些突破性進(jìn)展。在材料方面,其中一項(xiàng)重大改進(jìn)是 High-K 材料的引入為柵極絕緣層微縮化所帶來(lái)的改善。應(yīng)變的引入能提升載流子的遷移率,抵消柵氧化層和柵長(zhǎng)度減少所導(dǎo)致的有限增益。在功率方面,供電電壓降低的速度遠(yuǎn)遠(yuǎn)落后于微縮化理論所需的規(guī)劃值。因此,多核處理器、多閾值電壓(multi-Vt)、復(fù)雜的功耗管理策略便應(yīng)運(yùn)而生。如今,光刻技術(shù)正日益成為突破技術(shù)限制的羈絆。超紫外線技術(shù)(EUV)和在28nm及以下工藝中采用193nm波長(zhǎng)的技術(shù)被推延,催生了浸沒(méi)式光刻以及多重光刻技術(shù),即人們所熟知的雙重圖形曝光技術(shù)(double patterning)??梢灶A(yù)見(jiàn)的是,在14nm節(jié)點(diǎn)上,三重曝光技術(shù)的采用將在所難免。
正是人們的不斷地創(chuàng)新才讓各種產(chǎn)品遵循著摩爾定律而不斷向前發(fā)展。微縮化技術(shù)的發(fā)展史就是一部創(chuàng)新的歷史,絕不是簡(jiǎn)單地重復(fù)。最近在22nm納米技術(shù)上取得重大突破技術(shù)則是英特爾的3D器件架構(gòu)。這充分表明全耗盡晶體管能夠通過(guò)在相同面積上集成更多晶體管,從而改善集成電路性能和/或降低功耗,是一種卓越的解決方案。
全耗盡晶體管與傳統(tǒng)的晶體管在結(jié)構(gòu)上的區(qū)別在于,前者的溝道并不由其摻雜程度(doping level)定義,而是由其物理尺寸(physical dimensions)定義,邊界由氧化物材料構(gòu)成。這種結(jié)構(gòu)在設(shè)計(jì)上的獨(dú)特性改善了溝道的柵控制,提高了性能并縮短了柵的長(zhǎng)度。此外,由于溝道定義不再受限于溝道的摻雜程度,全耗盡技術(shù)提供了另外一種選擇,既采用未摻雜溝道。這樣就能降低變異性,并提升載流子的遷移率。在當(dāng)前的電子科技條件下,溝道摻雜是導(dǎo)致變異性的主要源頭,而提高載流子的遷移率將提高驅(qū)動(dòng)電流,并提高工作頻率。